72 research outputs found

    Trapping Horizons in the Sultana-Dyer Space-Time

    Full text link
    The Sultana-Dyer space-time is suggested as a model describing a black hole embedded in an expanding universe. Recently, in \cite{0705.4012}, its global structure is analyzed and the trapping horizons are shown. In the paper, by directly calculating the expansions of the radial null vector fields normal to the space-like two-spheres foliating the trapping horizons, we find that the trapping horizon outside the event horizon in the Sultana-Dyer space-time is a past trapping horizon. Further, we find that the past trapping horizon is an outer, instantaneously degenerate or inner trapping horizon accordingly when the radial coordinate is less than, equal to or greater than some value.Comment: no figures, 5 pages; PCAS and key words are adde

    Magnetospectroscopy of epitaxial few-layer graphene

    Full text link
    The inter-Landau level transitions observed in far-infrared transmission experiments on few-layer graphene samples show a behaviour characteristic of the linear dispersion expected in graphene. This behaviour persists in relatively thick samples, and is qualitatively different from that of thin samples of bulk graphite.Comment: Invited short review to appear in a special issue of Solid State Communication

    Anisotropy in the Hubble constant as observed in the HST Extragalactic Distance Scale Key Project results

    Full text link
    Based on general relativity, it can be argued that deviations from a uniform Hubble flow should be thought of as variations in the Universe's expansion velocity field, rather than being thought of as peculiar velocities with respect to a uniformly expanding space. The aim of this paper is to use the observed motions of galaxies to map out variations in the Universe's expansion, and more importantly, to investigate whether real variations in the Hubble expansion are detectable given the observational uncertainties. All-sky maps of the observed variation in the expansion are produced using measurements obtained along specific lines-of-sight and smearing them across the sky using a Gaussian profile. A map is produced for the final results of the HST Extragalactic Distance Scale Key Project for the Hubble constant, a comparison map is produced from a set of essentially independent data, and Monte Carlo techniques are used to analyse the statistical significance of the variation in the maps. A statistically significant difference in expansion rate of 9 km/s/Mpc is found to occur across the sky. Comparing maps of the sky at different distances appears to indicate two distinct sets of extrema with even stronger statistically significant variations. Within our supercluster, variations tend to occur near the supergalactic plane, and beyond our supercluster, variations tend to occur away from the supergalactic plane. Comparison with bulk flow studies shows some concordance, yet also suggests the bulk flow studies may suffer confusion, failing to discern the influence of multiple perturbations.Comment: 23 pages, 5 figures, to be published in New Astronom

    Is the evidence for dark energy secure?

    Full text link
    Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann-Robertson-Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass 0.5 eV. Although such an Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the `baryon acoustic oscillation' peak in the autocorrelation function of galaxies, it may be possible to do so e.g. in an inhomogeneous Lemaitre-Tolman-Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references reformatted in journal style - text unchange

    Dark energy as a mirage

    Full text link
    Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free expansion Ht ~ 1 at low redshifts. To calculate the modified observable distance-redshift relations, we introduce a generalized Dyer-Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude-redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z_0=0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3: matches the version published in General Relativity and Gravitatio

    The Lemaitre Model and the Generalisation of the Cosmic Mass

    Full text link
    We consider the spherically symmetric metric with a comoving perfect fluid and non-zero pressure -- the Lemaitre metric -- and present it in the form of a calculational algorithm. We use it to review the definition of mass, and to look at the apparent horizon relations on the observer's past null cone. We show that the introduction of pressure makes it difficult to separate the mass from other physical parameters in an invariant way. Under the usual mass definition, the apparent horizon relation, that relates the diameter distance to the cosmic mass, remains the same as in the Lemaitre-Tolman case.Comment: latex, 16 pages, Revision has minor changes due to referee's comments

    Imitating accelerated expansion of the Universe by matter inhomogeneities - corrections of some misunderstandings

    Full text link
    A number of misunderstandings about modeling the apparent accelerated expansion of the Universe, and about the `weak singularity' are clarified: 1. Of the five definitions of the deceleration parameter given by Hirata and Seljak (HS), only q1q_1 is a correct invariant measure of acceleration/deceleration of expansion. The q3q_3 and q4q_4 are unrelated to acceleration in an inhomogeneous model. 2. The averaging over directions involved in the definition of q4q_4 does not correspond to what is done in observational astronomy. 3. HS's equation (38) connecting q4q_4 to the flow invariants gives self-contradictory results when applied at the centre of symmetry of the Lema\^{\i}tre-Tolman (L-T) model. The intermediate equation (31) that determines q3′q_{3'} is correct, but approximate, so it cannot be used for determining the sign of the deceleration parameter. Even so, at the centre of symmetry of the L-T model, it puts no limitation on the sign of q3′(0)q_{3'}(0). 4. The `weak singularity' of Vanderveld {\it et al.} is a conical profile of mass density at the centre - a perfectly acceptable configuration. 5. The so-called `critical point' in the equations of the `inverse problem' for a central observer in an L-T model is a manifestation of the apparent horizon - a common property of the past light cones in zero-lambda L-T models, perfectly manageable if the equations are correctly integrated.Comment: 15 pages. Completely rewritten to match the published version. We added discussion of 2 key papers cited by VFW and identified more clearly the assumptions, approximations and mistakes that led to certain misconceptions

    Abstract sentence representations in 3-year-olds: Evidence from language production and comprehension

    Get PDF
    We use syntactic priming to test the abstractness of the sentence representations of young 3-year-olds (35-42 months). In describing pictures with inanimate participants, 18 children primed with passives produced more passives (11 with a strict scoring scheme, 16 with lax scoring) than did 18 children primed with actives (2 on either scheme) or 12 children who received no priming (0). Priming was comparable to that reported for older children and adults. Comprehension of reversible passives with animate participants before and after priming was above chance but did not improve as a result of priming. Young 3-year-olds represent sentences abstractly, have syntactic representations for noun, verb, "surface subject", and "surface object", have semantic representations for "agent" and "patient", and flexibly map the relation between syntax and semantics. Taken together with research on syntactic categories in 2-year-olds, our results provide empirical support for continuity in language acquisition
    • …
    corecore